异方差检验

异方差检验
预览:

七、 异方差与自相关

一、背景

我们讨论如果古典假定中的同方差和无自相关假定不能得到满足,会引起什么样的估计问题呢?另一方面,如何发现问题,也就是发现和检验异方差以及自相关的存在性也是一个重要的方面,这个部分就是就这个问题进行讨论。

二、知识要点

1、引起异方差的原因及其对参数估计的影响

2、异方差的检验(发现异方差)

3、异方差问题的解决办法

4、引起自相关的原因及其对参数估计的影响

5、自相关的检验(发现自相关)

6、自相关问题的解决办法 (时间序列部分讲解)

三、要点细纲

1、引起异方差的原因及其对参数估计的影响

原因:引起异方差的众多原因中,我们讨论两个主要的原因,一是模型的设定偏误,主要指的是遗漏变量的影响。这样,遗漏的变量就进入了模型的残差项中。当省略的变量与回归方程中的变量有相关关系的时候,不仅会引起内生性问题,还会引起异方差。二是截面数据中总体各单位的差异。

后果:异方差对参数估计的影响主要是对参数估计有效性的影响。在存在异方差的情况下,OLS 方法得到的参数估计仍然是无偏的,但是已经不具备最小方差性质。一般而言,异方差会引起真实方差的低估,从而夸大参数估计的显著性,即是参数估计的t 统计量偏大,使得本应该被接受的原假设被错误的拒绝。

2、异方差的检验

(1)图示检验法

由于异方差通常被认为是由于残差的大小随自变量的大小而变化,因此,可以通过散点图的方式来简单的判断是否存在异方差。具体的做法是,以回归的残差的平方2i e 为纵坐标,回归式中的某个解释变量i x 为横坐标,画散点图。如果散点图表现出一定的趋势,则可以判断存在异方差。

(2)Goldfeld-Quandt 检验

第1页/共13页 下一页>尾页

寻找更多 "异方差检验"